Year 3 Home Learning Summer 2 Ruby: Home Learning: Summer 1 - week 7					
WB 08.06.2020	Maths	English	Reading	Science	Foundation
Monday	https://whiterosemaths.co $\mathrm{m} /$ homelearning/year-3/ Summer Term - Week 7 (w/c 8th June) Lesson 1 - Equivalent fractions (1)	Setting Description: Reading Comprehension - Fact Retrieval English Lesson 1 https://www.thenational.academy/year-3/english/setting-description-reading-comprehensio n-fact-retrieval-year-3-wk2-1		Parts and function of a plant This will be one lesson spread over the course of a week. The video has particular points where it is beneficial to pause and think carefully about what is being explored. You can do the entire lesson in one go or split over the week as set out below. https://www.thenationalacademy/year-3/foundation/parts-and-function-of -a-plant-year-3-wk2-3 Learn spelling/actions for the parts of a plant. . video ref: 1.38	
Tuesday	https://whiterosemaths.co m/homelearning/year-3/ Summer Term - Week 7 (w/c 8th June) Lesson 2 - Equivalent fractions (2)	Setting Description: Reading Comprehension - Word Meaning English Lesson 2 https://www.thenational.academy/year-3/english/setting-description-reading-comprehensio n-word-meaning-year-3-wk2-2		Go to the time stamos for the specific learning tasks or watch the whole video through https://www.thenational.academy/year-3/found ation/parts-and-function-of-a-plant-year-3-wk23 Draw and label parts of a plant video ref: 3:19 Make a reference table for plants video ref: 8:24 PLant investigation	History revision Norman Conquest Lesson 1 Foundation Lesson 1 https://www.thenationa l.academy/year-3/found ation/norman-conquest-lesson-1-year-3-wk1-1
Wednesday	https://whiterosemaths.co m/homelearning/year-3/ Summer Term - Week 7 (w/c 8th June) Lesson 3 - Equivalent fractions (3)	Setting Description: Identifying the features of a text English Lesson 3 https://www,thenational.academy/year-3/english/setting-description-identifying-the-features-of-a-text-year-3-wk2ㅇ	VIPERS: Read a chapter from a book of your choice and summarize it in a) 50 words b) 10 words		
Thursday	https://whiterosemaths.co m/homelearning/year-3/ Summer Term - Week 7 (w/c 8th June) Lesson 4 - Compare fractions	GRAMMAR Setting Description: SPaG focus - Fronted adverbial phrases English Lesson 4 https://www.thenational.academy/year-3/english/setting- description-spag-focus-fronted-adverbial-phrases-year-3- wk2-4	VIPERS: Using a dictionary (online is fine), can you define $3-5$ words that you are unsure about or that are 5 letters and above..	PLant investigation video ref: 11: 00	MUSIC - To beatbox using rhythmic patterns https://www.thenationa l.academy/year-3/found ation/to-beatbox-using-r hythmic-patterns-year-3 -wk2-5
Friday	https://whiterosemaths.co m/homelearning/year-3/ Summer Term - Week 7 (w/c 8th June) Lesson 5 - Maths challenge	WRITING Setting Description: Write a setting description English Lesson 5 https://www.thenational.academy/year-3/english/setting ption-year-3-wk2-5	iption-write-a-setting-descri		

Optional extras

Daily times tables and division facts practise - https://www.topmarks.co.uk/maths-games/7-11-years/times-tables Daily reading of a book, magazine, comic or newspape

1) How many quarters are the same as $\frac{1}{2}$?
\qquad
2)

1 whole

1 whole

4-shape

2-shape

1-shape

Copy and complete the sentences:
a) A 4-shape is equivalent to \qquad of 1 whole.
b) A 2-shape is equivalent to \qquad of 1 whole.
c) A 1-shape is equivalent to \qquad of 1 whole.

Answer these questions:
d) How many 2 -shapes are equivalent to 1 whole? \qquad
e) How many 1-shapes are equivalent to 1 whole? \qquad
f) How many 4-shapes are equivalent to 1 whole? \qquad
3) The yellow cubes are joined to make 1 whole.

a) What fraction of the whole does 1 cube represent? \qquad
b) How many cubes represent $\frac{1}{3}$ of the whole? \qquad
c) How many sixths are equivalent to $\frac{1}{3}$? \qquad

1) 2 quarters ($\frac{2}{4}$) are the same as $\frac{1}{2}$.
2) a) A 4-shape is equivalent to $\frac{1}{2}$ of 1 whole.
b) A 2-shape is equivalent to $\frac{1}{4}$ of 1 whole.
c) A 1-shape is equivalent to $\frac{1}{8}$ of 1 whole.
d) 42-shapes are equivalent to 1 whole.
e) 81-shapes are equivalent to 1 whole.
f) 24-shapes are equivalent to 1 whole.
3) a) 1 cube represents $\frac{1}{6}$ of the whole
b) $\mathbf{2}$ cubes represent $\frac{1}{3}$ of the whole.
c) $\frac{2}{6}$ are equivalent to $\frac{1}{3}$.
4) There are a wide variety of ways in which children can use number shapes and cubes to represent $\frac{1}{4}$. Examples include:

5) The diagram represents a bar model with 4 squares shaded. $\frac{1}{2}$ (4 out of the 8 squares) are shaded in green. $\frac{1}{4}$ of the shape is 2 squares shaded. As 4 squares are shaded, this represents $\frac{2}{4}$. This equivalent to $\frac{1}{2}$.
6) a) Kelsey is correct. $\frac{1}{2}$ or $\frac{6}{12}$ of the bar model is shaded in.

b) $\frac{3}{6}$ is also equivalent to $\frac{1}{2}$ or $\frac{6}{12}$. ($\frac{1}{6}$ is equivalent to $\frac{2}{12}, \frac{2}{6}$ to $\frac{4}{12}$ and $\frac{3}{6}$ to $\frac{6}{12}$.)

7) e) is the odd one out. This bar model is the odd one out because $\frac{2}{5}$ are shaded. All the other shapes have the equivalent of $\frac{1}{3}$ shaded
8) Circle the bar models that could be placed on each number line correctly.

Then, write which fraction on the number line they are equivalent to.
a)

b)

\qquad

c)

\qquad

2) Place the equivalent fractions in the correct place on the number lines.
a) $\frac{3}{5} \quad \frac{1}{5} \quad \frac{1}{1}$

b) $\frac{12}{12} \quad \frac{6}{8} \quad \frac{3}{12}$

1) a) The bar model is equivalent to $\frac{2}{3}$.

b) The bar model is equivalent to $\frac{1}{4}$.

c) The bar models are both equivalent to $\frac{3}{6}$. This is equivalent to $\frac{1}{2}$.

2) a)

b)

3) D is not equivalent to $\frac{1}{3}$. D represents $\frac{4}{10}$, which is equivalent to $\frac{2}{5}$.
4) Toby is incorrect. $\frac{4}{10}$ is equivalent to $\frac{2}{5}$, which has a lower denominator.
5) Both children are correct.

Samira would land on $\frac{4}{6}$, which is equivalent to $\frac{2}{3}$.

Toby would land on $\frac{2}{6}$, which is equivalent to $\frac{1}{3}$.

1) Complete the table of equivalence. One has been done for you.

Pictorial Representation	Fraction	Words
	One half is equivalent to two quarters.	

2) Circle the fractions that are equivalent to $\frac{2}{3}$.

$\frac{1}{2}$

$\frac{8}{12}$
3) Use the fraction wall to fill in the missing parts of the fractions.

$\frac{1}{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$	
$\frac{1}{9}$			$\frac{1}{9}$	$\frac{1}{9}$			$\frac{1}{9}$	$\frac{1}{9}$			$\frac{1}{9}$
$\frac{1}{12}$											

$$
\frac{1}{3}=\frac{\square}{6}=\frac{3}{\square}=\frac{\square}{12}
$$

1)

Pictorial Representation	Fraction	Words
	$\frac{1}{3}=\frac{3}{9}$	One half is equivalent to two quarters.
One third is equivalent to three ninths.		
	$\frac{3}{12}=\frac{1}{4}$	Three twelfths is equivalent to one quarter.

2)

$\frac{6}{8}$

3) $\frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}$
1)

2) C and D are the odd ones out as they are not equivalent to $\frac{3}{4}$. C represents $\frac{3}{5}$ and D represents $\frac{2}{3}$.
3)
A)
B)
C) $\frac{5}{10}=\frac{1}{2}$
$\frac{1}{2}=\frac{2}{4}$
$\frac{4}{6}=\frac{4}{12}$
D)
$\frac{1}{1}=\frac{2}{2}$

There are many possible answers. Example: $\frac{4}{6}=\frac{2}{3}$ or $\frac{4}{12}=\frac{1}{3}$
4) Erin is incorrect. The numerator is sometimes a multiple of 2 . $\frac{2}{6}$ and $\frac{4}{12}$ are equivalent to $\frac{1}{3}$ and 2 and 4 are multiples of 2. However, $\frac{3}{9}$ and $\frac{5}{15}$ are equivalent to $\frac{1}{3}$ but 3 and 5 are not multiples of 2 . Children may have used other examples in their reasoning.

1) Circle the fractions which are smaller than $\frac{4}{5}$?
A $\frac{1}{5}$

C

2) Circle the fractions which are larger than $\frac{1}{4}$?
A $\frac{2}{4}$

3) a) Look at the bar models below. Write the largest fraction shown.
b) Look at the bar models below. Write the smallest fraction shown.

B

C

D

4) Which fraction is the largest? Prove your answer using bar models.
$\begin{array}{lll}\frac{1}{8} & \frac{1}{2} & \frac{1}{4}\end{array}$
\qquad
\qquad

1)

C

2)

3) a) Bar model B shows $\frac{1}{4}$, which is the largest fraction.
b) Bar model C shows $\frac{1}{10}$, which is the smallest fraction.
4) $\frac{1}{2}$ is the largest fraction:

1) Sophia is correct. $\frac{1}{6}$ is the larger fraction as the whole has been split into 6 equal parts rather than 12, making each part larger. When the numerators are the same, the larger the denominator, the smaller the fraction.
2) Shen is correct. $\frac{2}{6}$ is equivalent to $\frac{1}{3}$.
3) a) The bar model should be the same length as the original, separated into equal proportions and should show a fraction greater than $\frac{3}{8}$. One example would be:

b) If children have drawn a bar separated into eighths, their answer should explain that they have shaded more than 3 parts of the bar. If they have used a bar separated differently, their answer should explain that the fraction they have shaded is equivalent to more than $\frac{3}{8}$.
